
Phase transitions in systems with reorienting impurity centres

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 6543

(http://iopscience.iop.org/0953-8984/1/37/003)

Download details:

IP Address: 171.66.16.93

The article was downloaded on 10/05/2010 at 18:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/37
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter l(1989) 6543-6549. Printed in the UK 

Phase transitions in systems with reorienting impurity 
centres 

G I Bersuker 
Institute of Chemistry, Academy of Sciences of the Moldavian SSR, Kishinev 277028, 
USSR 

Received 3 January 1989 

Abstract. Phase transitionsiiiduced by the quenchingof reorientations in asystem ofimpurity 
centres with adiabatic potentials having several equivalent minima are discussed. In addition 
to inter-centre coupling the transition temperature depends on the interaction between the 
impurity and the crystal. The interaction of the impurity electronic states with the crystalline 
vibrations causing the formation of the minima of the adiabatic potential also modifies the 
density of the crystal vibrations. The latter depends on the impurity reorientation which 
causes the essential change of the total energy of the crystalline vibrations in the phase 
transition. The system of Li+-KTa03 and Jahn-Teller centres in twofold-degenerate elec- 
tronic states are considered. The possibility of the formation of a Jahn-Teller glass phase is 
also discussed. 

1. Introduction 

Among impurity systems a large class of centres having adiabatic potentials with two or 
several equivalent minima and hence with several possible equivalent nuclear con- 
figurations exists. The most well known examples of such centres are the off-centres 
impurities in crystals (Narayanamurti and Pohll970, Deygen and Glinchuk 1974) and 
the orbitally degenerate Jahn-Teller centres (Bersuker 1984). In both cases the origin 
of the two, or several, minima in the adiabatic potential is the same: the vibronic mixing 
of the electronic states localised at the impurity (either degenerate or ground and excited 
states) by the lattice vibrations of appropriate symmetry. The system can reorient 
between these minimal configurations by means of either the off-centre ion jumping 
between the minima or reorientation of the appropriate near-neighbour deformations 
(in the case of Jahn-Teller centres). 

If the concentration of the impurities is large enough and their interaction is essential, 
a transition to a new phase in which the local dynamics of the impurities is quenched 
may take place. Therefore there are two possibilities: (i) all the off-centre ions are 
displaced (all the round-centre deformations are oriented) coherently resulting in an 
ordered phase, or (ii) a glass-like phase with disordered centre orientations (similar to 
the case of spin glasses (Edwards and Anderson 1975)) occurs. The parameters of the 
phase transition, in particular its temperature, are determined by the balance of the 
energy changes (during the transition to the new phase) of the impurities and the 
crystalline matrix, respectively. 
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One can expect that the injection of the impurity, inducing the multi-well adiabatic 
potential, results in a considerable redetermination of the spectrum of the crystalline 
vibrations of appropriate symmetry and hence in the dependence of the appropriate 
internal energy on the motion of the impurity. Thus the description of the phase transition 
on the systems under consideration should be based on a detailed consideration of the 
interaction of the impurity with the lattice. 

2. The phase transition temperature 

The Hamiltonian H of the impurity-phonon system under consideration includes the 
Hamiltonians of the impurity centres, H d ,  the lattice, Hlat, and the interaction between 
thesetwosubsystemsH,,,, thelatternotbeingassumedtobesmall: H = Hd + HI,, + H,,,. 
It is convenient to divide the total Hamiltonian H into three parts which correspond to 
the reorientation motion of the impurity HI, to the crystalline vibrations H,, modified 
by the coupling with the impurity, and to the small interaction VI,, between both parts 
mentioned above: H = HI + H,  + V,,,. Considering the reorientation motion as slow 
in comparison with the lattice vibrations, it is possible to separate these subsystems 
adiabatically. The smallness of the interaction VI,, justifies this approximation, its val- 
idity being tested in every particular case discussed below. In this case the total free 
energy of the impurity crystal F = U + TS,  where U is the internal energy, T the 
temperature and S the entropy, can be taken as a sum of two main contributions of the 
crystalline matrix Fc and the impurity subsystem F,: F = F, + xF,, wherex is the impurity 
concentration. Here F, represents the free energy of the crystal in the vibrational 
spectrum in which the interaction of the electronic states of the impurity with the nuclear 
vibrations is taken into account. Similarly, F, corresponds to the single impurity centre, 
its levels being formed by the same interaction with the crystal. In the form of Fused 
above, it is also assumed that the interaction between the impurities is small. Due to this 
fact it is possible to write the free energy of the system of impurities as a sum of the terms 
corresponding to each single centre. The injection of the impurity can be expected to 
leave the electronic spectrum of the crystal essentially unchanged. 

Limiting ourselves to consideration of first-order phase transitions only, it is possible 
to take the free energy of the ‘para-phase’ Fp at the critical temperature T = T, to be 
equal to that of the ‘freezing’ phase F f ,  Fp(Tc) = Ff(Tc). In this case we obtain 

T ,  = ( A U ,  + xAU,)/(AS, + x A S , )  (1) 

where AU,  = Uf, - U: is the difference between the internal energies of the crystal in 
the corresponding phases, and ASc, AU, and AS, are defined in a similar way. The 
internal energy of the lattice vibration and the lattice entropy in the ‘para-phase’ (freezing 
phase) can be written in the form 

In (2) E ( W )  is the energy of the harmonic oscillator, S ( o ,  T )  is its entropy and Zp(f)(w) 
is the density of vibrational states of the crystalin the para-phase (freezing phase). Within 
the approximation of non-interacting impurity centres the total density of vibrations is 
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Z (  w )  = Zo( U )  + xZ(w), where Z( w )  is the density of those vibrations which can interact 
with the electronic states of the impurity according to symmetry rules. Neglecting the 
changes in the elastic characteristics of the crystal at the phase transition, we obtain 

(3) 

where AZ(w)  = Z,(w) - ZP(m). 
For the impurity centre, the change of the energy AUi can be taken as the difference 

of the energies Ef and of the states occupied before and after the transition: AUi = 
Ef - ep = - V(x). Here V(x) is the concentration-dependent energy, which responds to 
the interaction between the impurity centres. As a result expression (1) takes the 
following form: 

T, = V(X) - E(w)AZ(W)  d o  - ASi - S(U,  T,)AZ(O) d o  . (4) ( I  1/i i 1 
As it can be seen from (4), the temperature of the phase transition is determined by the 
effect of the impurity electronic states on the crystalline vibration AZ(w) .  In particular, 
if at concentrations less than some limiting value xo the phase transition in the system is 
not observable, T, =s 0, then it follows from (1) that V(x) =s AU,/x.  In other words, the 
change in the energy of the impurity subsystem due to the transition to the new phase is 
compensated by the corresponding change in the energies of lattice vibration. T, grows 
with the strengthening of the interaction V(x) as the concentration x increases. 

Thus, for further calculation of T, it is necessary to evaluate the new density of 
crystalline vibrations Z ( U ) ,  redetermined by the injection of the impurity and hence 
dependent on its dynamics. 

3. Off-centre impurities 

Let us consider the activation mechanism of reorientations of the impurities for which 
w = w o  exp(-E/kT), where w is the probability of reorientation and E the activation 
energy. The system Li+-KTa03, which was investigated in some detail (Vugmeister and 
Glinchuk 1985) can be used as an example of this case. The Li+ ion, substituted for the 
K+ one, is displaced from the lattice point along the direction [loo] and jumps between 
the six equivalent off-centre positions. At a given concentration x of the Li impurities, 
the system undergoes a transition at T = T, to the new phase characterised by the 
‘freezing’ of the ion’s jumping. When the concentration x changes within the range 
1% 6 x S 9 % ,  the transition temperature varies from T, = 0 K to T, = 100 K. The 
Hamiltonian of the system and the appropriate impurity dynamics were discussed by 
Bersuker (1988). According to the above discussion, the slow subsystem corresponding 
to the jumping motion of the ion between the off-centre positions was separated from 
the fast one which describes the vibrations of the atoms of the crystal, the interaction 
between these subsystems being small. It was shown that the off-centre displacement of 
the ion is due to the mixing of the impurity ground electronic states with the excited 
threefold-degenerate one by threefold degenerate lattice vibrations of the type tlu, which 
together with the twofold-degenerate ones form the adiabatic potential of the system. 



6546 G I Bersuker 

The latter has six minima along the appropriate crystallographic directions. In its turn, 
the displacement of the Li atom results in a radical redetermination of the tl,-type lattice 
vibrations, its Green functions having the following form: 

Gtlu(o) = [ ( ~ ) ’ / 2 n ] ( [ g o ( w )  + 3 1  sin2 cp + w g o ( w ) w 2  cos’ cp} 

x {[P + go(w)]-l - [o’o-2go(w)]-1} ( 5 )  

where g o ( o )  is the Green function of the initial tl, crystalline vibration (without the 
vibronic coupling with the impurity), 0-2 = Re go (0) I = o ,  cp being the angular variable 
of the tl, nuclear displacements in spherical coordinates. The values cp = 0, in, n and 
Pn correspond to the four minima of the adiabatic potential (the second spherical 
coordinate is absent in (5) because of the special choice of the coordinate system). Thus, 
the reorientation of the impurity between the minima results in an appropriate change 
in the density of the tl, crystalline vibrations. 

The change in the internal energy of the crystal can be estimatedusing the dependence 
of the activation energy on the impurity concentration induced by the interaction 
between the impurities. Following previous estimations (Bersuker 1988) of the exper- 
imental data on thermal averaging of the quadrupole structure of the NMR spectra (Van 
der Klink et aZ1983), the interaction V ( x )  changes in the range 750 < V ( x )  =s 1100 K as 
x varies from 1% to 9%. The change in the entropy of the impurity centre can be taken 
as follows (Eberhart et a1 1986): AS, = ln(W,/W,), where W, and Wp are the numbers of 
states of the centre in the two phases, respectively. Taking into account that in the ‘para- 
phase’ the system is delocalised over all the six minima (in contrast to the single minimum 
state in the freezing phase) we get: ASl = In 6. Neglecting ASc as being small compared 
with ASl (the validity of this statement is tested below) and substituting in ( 4 )  the 
magnitudes V ( x , )  and T,(xo) at some valuex = xo,  one finds: AU,/x = 0. 19hwo = 140 K 
where hwo is the maximum energy of the appropriate crystalline phonons. Using this 
value for AU, and the estimations of V ( x )  given in Bersuker (1988), one obtains good 
agreement between the calculated T, via (4) and the experimental values of the phase 
transition temperatures over the whole range of concentrations x .  

Now let us calculate AU, and ASc in an explicit form by the use of (5). In the freezing 
phase, the system is localised in one of the minima (cp = 0), and in the para-phase it can 
be considered approximately as delocalised over all the minima, i.e. GtIu(w) from (5) 
can be averaged over the angle q . In order to calculate the changes in the internal energy 
and the entropy (3) it is necessary to set the initial density of the crystalline vibrations 
Im g o ( o ) .  For the sake of simplicity, the latter can be presented by the model density 
Im go(w) = Aow2(wo - w )  with a maximum frequency wmaX = wo. As a result (4) takes 
the form 

kT,[-ASi - Do(kT,/hwo) + D1(kTC/h~o)’] = V ( X )  - O . l h ~ o  (6) 

where Dk = J;Qk ln(1 - e-”) d Q  and the higher order terms in kT,/hwo = (10-1-10-2) 
are omitted, As can easily be seen, AS, (the second and the third terms in the brackets) 
are very much smaller than ASi, and the change in the internal energy AUc/x = 0. 1hwo 
is by its order of magnitude close to the value 0. 19hwo obtained above, which gives good 
agreement with the experimental data for T,. The remaining differences are due to the 
fact that the calculations were made in a rough approximation using the model density 
of vibrations Imgo(w) and the simplified redetermined density Z ( w )  = Im G,,”(w) (5) 
(in particular it was supposed that Re go(@) B Im go(w)). To obtain more accurate 
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estimations, the real density of the crystalline vibrations taking into account its depen- 
dence on the concentration of the impurities has to be employed. 

4. Jahn-Teller centres 

As an example of systems reoriented by tunnelling, we consider Jahn-Teller impurity 
centres in twofold orbitally degenerate electronic states of type E strongly coupled with 
the crystalline vibrations of appropriate symmetry. Within the approximation of strong- 
linear and weak-quadratic vibronic interactions the adiabatic potential of such a system 
consists of three multidimensional minima in the space of the twofold degenerate 
symmetrised crystalline vibrations Q ,  and Q, of type E ,  where 8 and E are the rows of 
the E-representation (Bersuker 1984). The tunnelling of the system between these 
minima is accompanied by the motion of the wave of lattice deformations around the 
impurity. As a result of several transformations the total vibrational Hamiltonian of the 
system (the fast subsystem) takes the form (Bersuker and Polinger 1981) 

Here Q,, is the &type displacement of the coordination sphere, nearest to the impurity, 
W the constant of the quadratic vibronic coupling (the small parameter), Q, the angular 
variable of the nuclear displacements (the values Q, = 0, jn, $n corresponding to the 
minimaof the adiabatic potential), H( Q,) the Hamiltonian of the initial &type harmonic 
vibrations, fi( Q,) is the Hamiltonian of &-vibrations, radically redetermined by the 
vibronic interaction (in a manner similar to (3)). The density of vibrations corresponding 
to the Hamiltonian fi(Q,) as seen from (7) does not contain the variable Q, and hence it 
does not change with the transition to the ‘freezing’ phase, A& = 0. On the other hand, 
the effect of the vibronic interaction on the &vibrations is reduced to a weak local 
perturbation, described by the term WQ?, cos(3cp) in (7), which can result in a pseudo- 
local vibration (similar to the case of the isotopic defect in the lattice dynamics). This 
means that the initial density of @-vibrations remained practically invariant during the 
reorientation, AZO = 0. It should be noted that the weak dependence of the density of 
the redetermined crystalline vibrations on the motion of the impurity subsystem is due 
to the weak quadraticvibronic coupling resulting in the low barriers between the minima 
of the adiabatic potential. (In the case of linear vibronic coupling, W = 0, the adiabatic 
potential surface possesses an equipotential continuum of minima along the Q, axis, 
there is an integral of motion a / d q  in the system, and the reorientation motion of the 
impurity centre separates exactly from the lattice vibrations). Thus we obtain from (4) 

kT, = V(x)/ASi = 0.9V(x). (8) 

To estimate the value ASi we insert in (8) ASi = In 1 = In 3, where 1 is the number of 
minima of the adiabatic potential. Thus, in a system of Jahn-Teller centres, transition 
to the phase in which each centre is located in one of its distorted configurations is 
possible as a result of their interaction. The question of interest concerns the character 
of the phase generated in this way, in particular the possibility of formation of Jahn- 
Teller glass (Mehran and Stevens 1983). The displacement of the atoms of the nth 
coordination sphere of the Jahn-Teller centre due to the coupling of the electrons of the 
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centre with the crystalline vibrations in the case under consideration is as follows 
(Bersuker and Polinger 1981): 

Q, = Vw;3/[1 - 2W0cf C O S ( ~ C ~ ) ] .  (9) 
In (9), Vis the constant ofthelinearvibroniccoupling, CO;? = Z,uK(n)uK(1)w,2, where 
the summation is taken over all the wavevectors and the branches of the crystalline 
vibrations, u,(n) being the Van Vleck coefficients of the n-th coordination sphere and 
w, are the frequencies of the normalvibrations. If, for the sake of simplicity, one neglects 
the dependence of the polarisation unit vectors e(K) on the value of K (the scalar model 
of the crystalline vibrations), then the dependence of the distortion Q,(r) of the lattice 
on the distance r to the centre r = ( r ,  - r l )  (where r, and rl  are the radius vectors of the 
n-th and first coordination sphere, respectively) is determined by the expression 

Here K~ is the maximum value of the wavevector and the dispersion minimum for the 
acoustic vibrations wK = CK is employed. In the right-hand expression in (10) the first 
terms of the series for the integral sinus are given. As can easily be seen, the Q,(r) 
changes sign when the distance r to the impurity centre reaches the value determined by 
the inequality KOr' 2 4.2. At r = r", K ~ Y "  - 5.8, Q,(r) changes sign again, and so on. 
Thus the space around the impurity centre is divided into domains, each of which can 
include several coordination spheres, the distortions of the lattice in them induced by 
the vibronic interaction having alternating signs. Since the interaction alternating in sign 
can be assumed to be the main driving force to the glass-like phase, one can conclude 
that the system of Jahn-Teller centres with strong enough vibronic coupling undergoes 
a transition to a Jahn-Teller glass at T = T, (8). 

5. Discussion 

As follows from (4), the dependence of the temperature T, of the phase transition 
on the impurity concentration is determined by the interaction between the impurity 
centres, while the magnitude of T, is also chiefly affected by the number 1 of the minima 
of the adiabatic potential (ASl 21 In 1) and by the nature of the impurity-lattice coupling 
A Z ( w ) .  The relatively low phase transition temperatures in the Li' : KTaO, system, 
where there is a rather strong interaction between the impurities, are due to the con- 
siderable redetermination of the density of vibrational states, which depends on the 
impurity reorientation, and hence to the essential changes in the internal energy of the 
lattice vibrations in the phase transition. 

Considering the expressions (4) and (8) one can make some conclusions concerning 
the effect of the impurity on the vibrations of the crystal. If the phase transition tem- 
perature of the system of impurities is essentially different from the value of the inter- 
impurity interaction, then a considerable redetermination of the density of the appro- 
priate lattice vibrations due to coupling with the impurity electrons can be expected. On 
the other hand, the relatively high temperatures T,(x) for the Pbl-.Ge,Te system 
(Takaoka and Murase 1979) allows one to assume that V(x)  - AU, is sufficiently large. 
In the case of Li+-KCl the Green function is similar to Gtl,(w) ( 5 )  (Bersuker and 
Polinger 1984), but the interaction between the impurities can be expected to be essen- 
tially weaker. Hence one can conclude that the transition to the freezing phase is possible 
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only for a sufficiently high concentration of the impurities R ,  when the numerator in (4) 
becomes positive. Assuming, in a manner similar to the case of KTa03, that AU,/x = 
(0. 1-0.2)hw0, where wo is the maximum frequency of the crystalline vibrations in KCl, 
one obtains the estimation of the magnitude of the interimpurity interaction V(R) 5 
(0. 1-0.2)hoo. The temperatures of the transitions to the new phase at x > R have to be 
somewhat lower than in the case of KTa03,  since in the case of Lif-KC1 the number of 
minima is 1 = 8. On the contrary, the transition to the phase of Jahn-Teller glass for 
centres in the twofold-degenerate electronic state can, according to (8), be expected to 
occur at low concentrations. 
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